Machine Learning: Community Tools

Dan Guest (HU, Berlin)
Snowmass Computational Fronteers Workshop
https://indico.fnal.gov/event/43829/contributions/192876/

Disclaimer

- I'm on ATLAS, I've been on ATLAS since I wrote my first line of C++
 - Everything here has a huge bias as a result
- I'll talk mostly about neural networks: boosting follows a similar workflow
 - It's still very popular, just not as much development recently
- I'm not an expert in anything I'm about to present
 - o I'm a physics postdoc: I mostly think about what *physics* I'll accomplish in the next 5 years

The Machine Learning Workflow

The Non Machine Learning Workflow

Step 1: restructure primary data

- Traditional hep code: process one object at a time
- ML is driven by parallelism
 - o E.g. GPUs
- Our data isn't formatted ideally for SIMD instructions
 - Want arrays not trees
- Numpy is a more natural fit
 - o For now we're all python

Making Datasets

People are better at numpy

Funtime Activity: Find Your Way To Numpy

Note: oversimplified setup Numpy Many pipelines are more complicated HDF5 / Zarr / etc Primary Data Main changes in the last few years: More uproot More non-ROOT formats

ROOT

ntuple

Can we make this simpler?

- Maybe... but it's not the obvious place to start
- In practice: Event Data Model (EDM) → training is several steps

But I want to make it better anyway!

- Great! How should we do this?
- LHC: "We have an Exabyte of ROOT data, we should use ROOT!"
 - Problem: our primary data is nothing like our training datasets
 - Also ROOT format := whatever is in a ROOT file, not a real standard
- ROOT: "we should invent a new data format!" (RNtuple)
 - Widespread use will require factorization and standardization
- Armchair Data Nerds (i.e. me): "Hasn't someone already solved this problem?"
 - o Parquet is another promising candidate
 - Many open source projects are receiving little to no funding!
- My opinion: we need more core developers for experiments
- Anyway, once we have some training data...

A few choices: Training "Flowchart"

How to improve? Focus on distribution

	pip / venv	conda	LCG Views	Containers (Docker, podman, singularity)
User configurable	Υ	Υ	X	Υ
Work on laptop	Υ	Υ	:'(Υ
Work on desktop	Υ	Υ	Υ	Υ
Works on cluster	:(:(Υ	Y (need work)
Works on grid	:(:(Υ	Y (need work)
Composable	Υ	Υ	:(X

- LCG views: lazy load an OS from a FUSF mount
 - Requires network!
- Containers: eager-load an OS from an image
- Containers could be synched / distributed more intelligently
 - <u>Examples</u> exist
 - Consider podman?
 - Or native docker?
- I assume root access to a desktop, normal user privileges for a cluster

Containers can be user-defined, but we could centralize support (e.g. base layers)

How do we apply models?

But isn't symmetric easier?

Advantages of symmetric:

- Only one library
- Cutting edge support
 - No need for standards
- Less validation required
- No need to understand format(s)

Problems with symmetric:

- Framework bloat
 - CMSSW has ~4 NN libraries
 - Dependency hell [1]
- C++ binding support

- Eventually, symmetric implementations tend to become factorized
 - E.g. Tensorflow in CMSSW
- But factorization will require model translation

Will ONNX save the day?

- Pro: there's a <u>well defined specification</u>, with many community contributors
 - Brought to you (in part) by Microsoft. What a time to be alive!
- Con: common standards always lag, big players have their own inference frameworks

Or will industry push lock-in?

- Current trend is toward a duopoly: Will ML go the way of instant messaging?*
 - Can we help?

In short: It's (mostly) chaos! (i.e. like the rest of academic code)

Maybe chaos (autonomy) isn't so bad

- We work in small teams
 - One reality of our funding structure
- Every application is different
- Commonality within experiments:
 - Branding
 - Raw ingredients
 - Internal quality review
- Think of it as a franchise

Wikipedia: "...a franchisor licenses its know-how, procedures, intellectual property, use of its <u>business model</u>, brand... In return the franchisee pays certain fees and agrees to comply with certain obligations, typically set out in a Franchise Agreement."

Summary: What can we do to help?

- Keep a balanced menu
 - Best practices can evolve, especially in ML
 - Avoid monoculture
- Know what you eat
 - Experiments can't avoid having ML engineers
 - Especially with more integrated ML
 - Common standards help here
- Pay your workers (anything)
 - Open source software doesn't pay (much)
 - But we rely on it heavily
 - Even citing your libraries helps (and it's free)

Thank You!

No, Really...it's OVER 10W. (backup after this)

So what's new in the ML workflow?

- At a high level: very little
- Making derived datasets → 50% of every PhD
 - Training datasets aren't very big: size < 1 TB
- Running stand-alone optimizations → 25% of many PhDs
- Calibration data:
 - We've done this forever
 - In many cases we're overtooled here
- At a low level: lots of things are new to physicists
 - But don't confuse "new to physics" with "new technology"
- Bottom line: this should be easy as long as we keep it simple

The boring spectrum

Standardized	Stable	Developing	Bleeding edge
ONNX	ROOT files	TMVA	RNtuple
Parquet	EDMs	Tensorflow, Keras	Data Lakes
HDF5	CVMFS	PyTorch, libtorch	
JSON		uproot	

ATLAS inference notes

- <u>lwtnn</u>: stable, probably won't change much in the near future
 - This is a good thing: it will go into run 3 trigger (tau, b-jet) and (hopefully) tracking
- Onnx runtime: merged to AtlasExternals
 - It's 11 MB or so: any reason **not** to merge this?
 - Supports many more models than lwtnn
- MVAUtils: BDT support in reconstruction
 - Should probably be a stand alone library
 - TMVA dependency recently removed, could we remove ROOT?
 - Support for XGBoost, LightGBM, TMVA
- Overall: we don't need full training libraries in reconstruction
 - Software team is small, support isn't worth our time

Training Side

- Strategy is the same as ever
 - No "hep" code
 - Use docker containers
- Build system:

pip install -r requirements.txt

- Lots of work scaling up
 - Cern has a GPU batch now!
 - Adding more grid sites
- Everything is python
 - The grad students love python

Also: we still need containers

- Small scale testing: use your laptop or local cluster
- Medium scale: lots of options, see Doug's talk (also CERN batch)
- Large scale: submit to the grid

TensorFlow

See <u>instructions</u> and <u>tutorial</u>

Are we limited? Not so much (anymore)

- Our NNs are pretty simple
 - We built a pretty good detector
 - Complexity increase not certain
 - <u>FTAG RNN</u> (21 MB file): 666,462 pars
 - Many industry nets are O(10M)
- Our jobs aren't too complicated
 - HP scans work "natively" on the grid
- We could use an "extension" mechanism for long jobs
- Other ideas (active learning) could come later

Crazier Ideas

Python: fun for the whole analysis!

- Write a for loop over PHYSLITE
 - Apply systematic, dump dataset
- Move everything into python
 - ML: <u>anything you want</u>
 - Lots of <u>data formats</u>
 - Use <u>pyhf</u> / <u>scipy</u> for limits
 - end-to-end learning is "easy"
 - d(limit)/d(anything)
- Vectorized out of the box
- This assumes
 - I know what I'm doing physics-wise
 - I don't want to write any tools

Can we use this for production?

- No (not yet)
 - no simple way to write a (D)AOD
 - Have to deal with awkward arrays
- Maybe it's worth trying
 - We could solve the inference problem
 - Or at least push it upstream
 - We could vectorize on HPCs for "free"
- Need python bindings for our EDM
 - PyROOT doesn't count
 - o Bindings need to be batch-wise

What would be nice

Ambitious goal: read AOD easily

Or as an intermediate step

- We already have AnalysisBase as a docker image
 - O But it's O(1 GB)
 - Also installs a lot (compiler, ROOT)

Roadmap: Less (C++) is more

- Figure out what the EDM needs to depend on
 - Maybe rip a few things out of ROOT, i.e. TLorentzVector
 - CLHEP / Eigen for particles / tracks
 - FastJet probably needed for jets
- Remove ROOT
 - Replace it with uproot (the C++ bindings)
- *Then* work on python bindings
- Having a "light" release would be nice for a few reasons
 - Weird HPC architecture
 - ML (obviously)
- Open data / education deserves its own mention

What about systematics?

- The current paradigm: take your data, leave the HEP ecosystem
 - Not a great way to use common code (or produce it)
- A lot of CP code is of the form
 - 1. Get a jet
 - 2. Look up variation by bin
 - 3. Multiply jet by variation
- Basically pt *= scale_factor[np.digitize(pt, pt_bins)]
 - Again, vectorized out of the box, can hook in GPU
- Missing parts
 - Community: hardly anyone actually does this
 - o Tools are *slightly* more complicated than this
- We could do most post-PHYSLITE analysis in python

How big are the ATLAS libraries?

Just the libxAOD .so files (excluding Dict files):

du -s /usr/AnalysisBase/21.2.108/InstallArea/x86_64-centos7-gcc8-opt/lib/libxAOD*.so | grep -v Dict.so | awk '{a+=\$1}; END {print a}'

18,288

Every .so file

du -s /usr/AnalysisBase/21.2.108/InstallArea/x86_64-centos7-gcc8-opt/lib/*.so lawk '{a+=\$1}; END {print a}'

113,164

How big is ROOT?

du -s

/usr/AnalysisBaseExternals/21.2.108/InstallArea/x86_64-centos7-gcc8-opt/lib/lib* | egrep 'lib[A-Z]+[a-z]*' | awk '{a+=\$1}; END {print a}'

247,304